Transition from interictal to ictal activity in limbic networks in vitro.
نویسندگان
چکیده
The transition from brief bursts of synchronous population activity characteristic of interictal epileptiform discharges (IEDs) to more prolonged epochs of population activity characteristic of seizures (ictal-like activity) was recorded in juvenile rat hippocampal-entorhinal cortex slices and hippocampal slices using multiple-site extracellular electrodes. Epileptiform activity was elicited by either increased extracellular potassium or 4-AP. IEDs originated in the CA3 a-b region and spread bidirectionally into CA1 and CA3c dentate gyrus. The transition from IEDs to ictal-like sustained epileptiform activity was reliably preceded by (1) increase in IED propagation velocity, (2) increase in IED secondary afterdischarges and their reverberation between CA3a and CA3c, and (3) shift in the IED initiation area from CA3 a-b to CA3c. Ictal-like sustained network oscillations (10-20 Hz) originated in CA3c and spread to CA1. The pattern of hippocampal ictal-like activity was unaffected by removal of the entorhinal cortex. These findings indicate that interictal and ictal activity can originate in the same neural network, and that the transition from interictal to ictal-like-sustained activity is preceded by predictable alterations in the origin and spread of IEDs. These findings elucidate new targets for investigating the proximate causes, prediction, and treatment of seizures.
منابع مشابه
Synchronous inhibitory potentials precede seizure-like events in acute models of focal limbic seizures.
Interictal spikes in models of focal seizures and epilepsies are sustained by the synchronous activation of glutamatergic and GABAergic networks. The nature of population spikes associated with seizure initiation (pre-ictal spikes; PSs) is still undetermined. We analyzed the networks involved in the generation of both interictal and PSs in acute models of limbic cortex ictogenesis induced by ph...
متن کاملHippocampus-entorhinal cortex loop and seizure generation in the young rodent limbic system.
Application of the convulsant 4-aminopyridine (4AP, 50 microM) to adult mouse combined hippocampus-entorhinal cortex (EC) slices induces interictal and ictal discharges originating from CA3 and EC respectively. In this model of limbic seizures, ictal discharges disappear over time and are reestablished after Schaffer collateral cut, a procedure that blocks interictal propagation from CA3 to EC....
متن کاملNeuronal network model of interictal and recurrent ictal activity.
We propose a neuronal network model which undergoes a saddle node on an invariant circle bifurcation as the mechanism of the transition from the interictal to the ictal (seizure) state. In the vicinity of this transition, the model captures important dynamical features of both interictal and ictal states. We study the nature of interictal spikes and early warnings of the transition predicted by...
متن کاملMaturation of kainate-induced epileptiform activities in interconnected intact neonatal limbic structures in vitro.
In vivo studies suggest that ontogenesis of limbic seizures is determined by the development of the limbic circuit. We have now used the newly-developed in vitro intact interconnected neonatal rat limbic structures preparation to determine the developmental profile of kainate-induced epileptiform activity in the hippocampus and its propagation to other limbic structures. We report gradual alter...
متن کاملSubiculum–entorhinal cortex interactions during in vitro ictogenesis
PURPOSE Our aim was to establish the contribution of neuronal networks located in the entorhinal cortex (EC) and subiculum to the generation of interictal and ictal onset patterns recorded in vitro. METHODS We employed field potential recordings of epileptiform activity in rat brain slices induced with the application of the K(+) channel blocker 4-aminopyridine. Local connections between the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 21 شماره
صفحات -
تاریخ انتشار 2003